Convolutional neural network with median layers for denoising salt-and-pepper contaminations
نویسندگان
چکیده
We propose a deep fully convolutional neural network with new type of layer, named median to restore images contaminated by salt-and-pepper (s&p) noise. A layer simply performs filtering on all feature channels. By adding this kind into some widely used networks, we develop an end-to-end that removes extremely high-level s&p noise without performing any non-trivial preprocessing tasks. Experiments show inserting layers simple fully-convolutional the L2 loss significantly boosts signal-to-noise ratio. Quantitative comparisons testify our outperforms state-of-the-art methods limited amount training data.
منابع مشابه
Block-Matching Convolutional Neural Network for Image Denoising
There are two main streams in up-to-date image denoising algorithms: non-local self similarity (NSS) prior based methods and convolutional neural network (CNN) based methods. The NSS based methods are favorable on images with regular and repetitive patterns while the CNN based methods perform better on irregular structures. In this paper, we propose a blockmatching convolutional neural network ...
متن کاملChebyshev Functional Link Artificial Neural Networks for Denoising of Image Corrupted by Salt and Pepper Noise
Here we have presented an alternate ANN structure called functional link ANN (FLANN) for image denoising. In contrast to a feed forward ANN structure i.e. a multilayer perceptron (MLP), the FLANN is basically a single layer structure in which non-linearity is introduced by enhancing the input pattern with nonlinear function expansion. In this work three different expansions is applied. With the...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملNon-melanoma skin cancer diagnosis with a convolutional neural network
Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2021
ISSN: ['0925-2312', '1872-8286']
DOI: https://doi.org/10.1016/j.neucom.2021.02.010